Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.08.17.22278898

ABSTRACT

The COVID-19 pandemic has resulted in extensive surveillance of the genomic diversity of SARS-CoV-2. Sequencing data generated as part of these efforts can also capture the diversity of the SARS-CoV-2 virus populations replicating within infected individuals. To assess this within-host diversity of SARS-CoV-2 we quantified low frequency (minor) variants from deep sequence data of thousands of clinical samples collected by a large urban hospital system over the course of a year. Using a robust analytical pipeline to control for technical artefacts, we observe that at comparable viral loads, specimens from patients hospitalized due to COVID-19 had a greater number of minor variants than samples from outpatients. Since individuals with highly diverse viral populations could be disproportionate drivers of new viral lineages in the patient population, these results suggest that transmission control should pay special attention to patients with severe or protracted disease to prevent the spread of novel variants.


Subject(s)
COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.20.21257552

ABSTRACT

Genetic variants of the SARS-CoV-2 virus are of substantial concern because they can detrimentally alter the pandemic course and disease features in individual patients. Here we report SARS-CoV-2 genome sequences from 12,476 patients in the Houston Methodist healthcare system diagnosed from January 1, 2021 through May 31, 2021. The SARS-CoV-2 variant designated U.K. B.1.1.7 increased rapidly and caused 63%-90% of all new cases in the Houston area in the latter half of May. Eleven of the 3,276 B.1.1.7 genomes had an E484K change in spike protein. Compared with non-B.1.1.7 patients, individuals with B.1.1.7 had a significantly lower cycle threshold value (a proxy for higher virus load) and significantly higher rate of hospitalization. Other variants (e.g., B.1.429, B.1.427, P.1, P.2, and R.1) also increased rapidly, although the magnitude was less than for B.1.1.7. We identified 22 patients infected with B.1.617 "India" variants; these patients had a high rate of hospitalization. Vaccine breakthrough cases (n=207) were caused by a heterogeneous array of virus genotypes, including many that are not variants of interest or concern. In the aggregate, our study delineates the trajectory of concerning SARS-CoV-2 variants circulating in a major metropolitan area, documents B.1.1.7 as the major cause of new cases in Houston, and heralds the arrival and spread of B.1.617 variants in the metroplex.

SELECTION OF CITATIONS
SEARCH DETAIL